Nano zinc ferrite/polyurethane foam composite materials for Cd$^{2+}$ and Cu$^{2+}$ ions removal from aqueous solution

Fatma Hassan Youssif1, Mohammad Salah Wahsh2, Nagwa Burham Burham1, Sami Mohammad Abdel-Azeem1

1 Chemistry Department, Faculty of Science, Fayoum University, Fayoum, Egypt
2 Refractories, Ceramics and Building Materials Department, National Research Centre, 12622, El-buhouth St., Dokki, Cairo, Egypt

ABSTRACT:
Zinc ferrite Polyurethane foam composite materials were formed by adding 0.33wt% ZnFe$_2$O$_4$ nanoparticles into polyurethane foam (PUF) during the preparation process. ZnFe$_2$O$_4$/PUF composite materials have successfully been utilized as a new solid phase extraction (SPE) sorbent for the separation of cadmium and copper ions in various water samples. The XRD results revealed that only the spinel structure of ZnFe$_2$O$_4$ was formed, with an average crystallite size of 24nm. The ferromagnetic behaviour of ZnFe$_2$O$_4$ nanoparticles was observed, with magnetization of 4.179emu/g and coercivity of 267.11G. The microstructure of the prepared composite materials observed the spongy structure and higher porosity. The aqueous solution and real water (from Fayoum city, Egypt) were used for studying the effects of pH, sorbent dose, and shaking time of the composite materials on the Cd$^{2+}$ and Cu$^{2+}$ ions removal. The batch procedure shows the maximum extraction percentage of Cd$^{2+}$ and Cu$^{2+}$ ions were 95.8% and 96.5% at the optimal conditions.

Key words: Nanoparticles; Zinc ferrite; Polyurethane foam; Heavy metals removal; Water purification.

INTRODUCTION:
Industrial activity annually generates tons of organic and inorganic pollutants that pollute water all over the world. Sewage treatment is a vital issue as the supply of clean water is in decline at the present time (Awad et al., 2019; Yang et al., 2019). Because of their toxicity and hazard to human life, heavy metals in water are a great source of worry (Gebru and Das., 2018; Singanan 2011). Among other heavy metals, cadmium and copper have attracted great interest due to their hazardous nature. Cadmium (Cd) is a highly toxic metal ion even in low concentration. It can accumulate in many organs of the human body such as the kidneys, lungs, and liver. A variety of industrial settings, including nickel–cadmium batteries, paint pigments, and electroplating, and they can pollute air, water, and soil. As a result, it is critical that we create effective ways for removing...
cadmium metal ions (WHO Guidelines for Drinking-Water Quality, 2003; Shang et al., 2015). While Copper (Cu) is one of the most common heavy metal pollutants found in the environment. Copper compounds in industrial and household waste, refineries, mine washing wastes, and toxic paints can be defined as the sources of copper pollution. Furthermore, being an essential element for humans, copper plays a significant role in lipid metabolism, carbohydrate metabolism, and hemoglobin formation. An adult's daily copper intake ranges between 1.5 and 2 mg. However, copper is hazardous when its concentration exceeds 2 mg L$^{-1}$, which is the copper recommendation limit (Turan et al., 2018). Currently, methods adopted for removing heavy metal ions from aqueous solutions include adsorption (Glatstein and Francisca, 2015), precipitation (Charerntanyarak, 1999), bioremediation (Amini et al., 2009), membrane filtration (Qdais and Moussa, 2004), ion-exchange (Alyüz and Sevil, 2009) and solvent extraction (Ahluwalia and Goyal, 2007). Among these technologies, the adsorption was considered superior due to its ease of operation and removal with high efficiency, cost effectiveness and availability of effective sorbents.

Recently, nano materials have received much public attention due to the ability of uniform and stable complexity with functional groups, tunable pores and high sensitivity and selectivity (Laus et al, 2010). Magnetic nano materials have been used to remove metal ions and dyes (Afkhami et al., 2010) due to their unique properties such as large surface area, small diffusion resistance (Afkhami et al., 2010) and ease of separating the sorbent from the sample solution after removing heavy metal ions with the help of an external magnetic field. Zinc ferrite belongs to a cubic spinel ferrite family, where Zn$^{2+}$ and Fe$^{3+}$ ions are situated at tetrahedral and octahedral positions respectively (Das et al., 2019). In addition, ZnFe$_2$O$_4$ has good crystallinity and magnetic properties, which are useful for the recovery of adsorbent from a treated solution using an external magnetic field (Alaqarbeh et al., 2020; Das et al., 2020). The spinel ferrite is also found to be a cost-effective adsorbent. But the surface area of metal ferrite (ZnFe$_2$O$_4$) is found to be low which may be a limiting factor towards the adsorption process. To increase the adsorption process, the adsorbent should have more surface area. The porous material contains more pores and surface area in comparison to the nonporous ones and is known to have more adsorption capacity (Das et al., 2019; Das et al., 2020). Unfortunately, most of the current inorganic sorbents rarely contain both at the same time, for example, the magnetic nanomaterials have a high surface area, but no adsorbing functional group. On the contrary, the organic polymer contains a large amount of multi-functional groups that can effectively adsorb heavy metal ions, while its small specific area and low adsorption rate limits its application. An effective sorbent with high capacity and rapid adsorption should have the following two main characteristics: functional groups and large surface area (Huang et al., 2011). Therefore, new absorbents with multifunctional groups and high surface area are still to be expected (Pan et al., 2009; Zhao et al., 2011). In this work, the synthesis and efficiency of ZnFe$_2$O$_4$/PUF nanocomposites on removing Cd$^{2+}$ and Cu$^{2+}$ ions from aqueous solution and real water (tap water, Lake Qarun water and Bahr Youssef water from Fayoum, Egypt) was studied. The effects of the pH, sorbent dose and shaking time of the nanocomposites on removal of cadmium and copper ions were also measured.
MATERIALS AND METHODS
The chemicals used for the preparation of the magnetic nanoparticles (ZnFe₂O₄) were ferric nitrate [Fe(NO₃)₃·9H₂O, Mw = 404.00 g/mol], zinc nitrate [Zn(NO₃)₂·6H₂O, Mw = 297.47 g/mol], citric acid mono hydrate gritty [C₆H₈O₇·H₂O, Mw 210.14 g/mol] and ammonia solution. The magnetic nano powder (ZnFe₂O₄) was synthesized by using modified citrate sol-gel method. Zn(NO₃)₂·6H₂O solution (0.25M) and Fe(NO₃)₂·9H₂O solution (0.25M) were prepared by dissolving the metal nitrates in distilled water. The prepared solutions were mixed in molar ratio of Zn²⁺/Fe³⁺ = 0.5 under constant stirring to get homogeneous solution with the heating rate of 5°C/min up to 80°C for 1 h. This mixture solution was added to the citric acid solution (0.25M) and stirred for 2 hours, maintaining a 1:1 molar ratio between metal nitrates solution and citric acid solution. The pH of the solution was adjusted to around 7.5 by adding ammonia solution. A viscous gel formed as the temperature is raised during the stirring process. At proper temperature ignition process started and the formed gel burned itself propagating combustion manner until all the gel was burnt out completely to form fine powder. The prepared powders were fired at 400°C for 1 h to form ZnFe₂O₄ nano powder.

Preparation of nanocomposite materials (ZnFe₂O₄/PUF)
The grafted PU foam was prepared by mixing 20g of the polyol (polyether) with 0.1g nano powder (ZnFe₂O₄). Then, the mixture was stirred well till complete homogeneity, after that 0.04g stannous octoate is added and stirring is continued, followed by addition 13.5 g toluene diisocyanate (TDI) gradually during vigorous stirring, then 3 drop of silicon oil was added with good stirring, while this the foaming liquid polymer begin to form, after this 2ml of distilled H₂O was added lead to expanding of foaming mixture. Then, the nano composite foaming mixture is poured into a box with fitted cover to allow homogenous dispersion of carbon dioxide "blowing agent". The foam is left to solidify at room temperature. Then, the foam material is cut into a small cubes washed by 0.1M HCl to remove inorganic impurities followed by doubly distilled water and dried at room temperature.

Experimental methods
The phase composition and average crystallite size of the magnetic nanoparticles were studied using an x-ray diffractometer (Model Bruker D8 Advance, Cu-Kα1, λ=1.54058Å, radiation with a secondary monochromator at a scanning speed of 1°/min). Debye– Scherrer’s equation was used to calculate the average crystallite size of ZnFe₂O₄ nanoparticles; D = 0.9λ/(FWHM × cos θ), where D is the crystallite size; FWHM is the observed full width at half maximum; θ is the Bragg angle, and λ is the wavelength of the X-ray radiation (λ = 1.54058 Å). Vibrating samples magnetometer (Lakeshore VSM 7410 model equipped with 3 T magnets) was used to measure the magnetic properties of the prepared ferrite nanoparticles. Transmission electron microscopy was used to investigate the morphology and particle size of the composite materials (HR-TEM, JEOL, JEM-2100 Electron Microscope). The microstructure of the prepared composite materials was examined using a scanning electron microscope (SEM, Quanta FEG 250). Flame atomic absorption spectrometer
(model AA-55, Agilent, Germany) equipped with single element hollow cathode lamps and air-acetylene burner was used for the determination of the metals. Air-acetylene flame and 0.7 mm slit width were used. The

Chemicals and reagents
All reagents used were of analytical reagent grade.

Preparation of standard solutions
Standard cadmium (II) solution: (1000 μg/ml) Cd (II) standard solution was prepared by dissolving 2.7543 g of cadmium nitrate [Cd(NO₃)₂.4H₂O], (Panreac, Spain) in DDW containing 2 mL of conc HNO₃ and accurately dilute to one-liter standard flask. Working solution of Cd (II) of concentration (10μg/mL) was prepared daily before experimental processes by dilution of 1mL from the stock solution with DDW up to 100 ml standard flask.

Standard Copper (II) solution: (1000μg/ml) Cu (II) standard solution was prepared by dissolving 3.9291 g of cupric sulphate pentahydrate [CuSO₄.5H₂O], (Aldrich, USA) in DDW containing 2 ml of concentrated H₂SO₄ and accurately dilute the solution up to one-liter standard flask. Working solution of Cu (II) of concentration (10μg/mL) was prepared daily before experimental processes by dilution of 1mL from the stock solution with DDW up to 100 ml standard flask.

Sodium hydroxide: 1 mol/l (Adwic, Egypt) was prepared by dissolving the reagent in DDW and used in the determination method. NaOH (0.1 mol/l) and HCl (0.1 mol/l) were used to adjust the pH

HCl solution: HCl (Adwic, Egypt) of different concentrations was prepared by appropriate dilutions from the concentrated acid

Methods of determination of the studied metal ions.

\[\%\text{uptake} = \frac{C - C_i}{C_i} \times 100 \]

(1)

Where \(C_0 \) and \(C \) are the initial and remaining concentrations of the metal ion, respectively

Effect of sorbent dose:
In order to determine the optimum sorbent dose for the extraction of Cd (II) or Cu (II) ions by ZnFe$_2$O$_4$/PUF composite, 25mL of the solution containing varying amounts of (ZnFe$_2$O$_4$/PUF) in the range from 0.05 to 0.3 g and 20µg of individual metal ions was adjusted to the optimum pH and shaken for 1h by a mechanical shaker, the amount of the metal ion remained in the solution was measured using the recommended method after separation of the nanocomposite by filtration.

Effect of shaking time:

For this purpose, the effect of shaking time on the extraction of Cd (II) and Cu (II) by composite nano powder was studied, where 0.1g of composite nano powder was added to 25mL of the tested metal ion solution containing 20µg of Cd (II) or Cu (II) at the optimum pH and automatically shaking for different time intervals by a mechanical shaker. From the equation: % E = [(C$_0$-C)/C$_0$] ×100, where C$_0$ and C are the initial and final concentrations, respectively, of metal ions in solution, the percent extraction was determined

Extraction isotherm and determination of capacity

Batch adsorption studies with different initial concentrations of Cd (II) and Cu (II) were performed in order to determine the extraction isotherm for Cd (II) and Cu (II) and sorbent capacity using the two composites, where the optimized weight of the two composite nano powder were added to 25mL of the tested metal ion solution containing varying concentration of Cd (II) or Cu (II) from 10-100 µg at the optimum conditions. The sorption capacity was calculated from the relation; Q = [(C$_0$ -C) xV]/m (2) where V is the sample volume in liter and m is the weight of composite in gram, C$_0$ and C are the initial and final concentrations in mg/L.

Pre-concentration of metal ions:

For this purpose, 25-1500 ml solution containing 20µg from each metal ion was adjusted to the optimum pH, addition of 0.2gm of the composite (ZnFe$_2$O$_4$/PUF) and the mixture was shaken for 1h by a mechanical shaker. Using 10 ml of 0.5 mol.L$^{-1}$ HCl solution as eluting agent, the amount of each metal ion in the eluate was measured by the recommended method. The concentration factor (CF) could be calculated from the ratio of the initial volume of the sample to the final volume after concentration. The recovery % was calculated from the initial concentration of the metal ion in solution and its concentration in the eluate according to equation (3).

$$% \, R = \frac{C}{C_\infty} \times 100$$

(3)

Where C∞ and C are the initial and final concentrations of metal ion in solution (µg/l), respectively

Regeneration and reusability studies

The regeneration experiments were conducted to estimate the reusability of the two composites (ZnFe$_2$O$_4$/PUF). This test was drawn with respect to Cd (II). For this purpose, 0.2 g from the composite materials was mixed together with 20 µg Cd (II) solutions at pH 6. final volume was 25ml, and the shaking time for 1 hr. After that, the loaded composite was washed with DDW and air-dried. Secondly, the composite was treated with 10 ml of 0.5 mol. L$^{-1}$ HCl solution as the eluting agent. After each desorption experiment, the adsorbent samples were washed several times with DDW till free from acid, air-dried, and used for the next run. The reusability of the two composites (ZnFe$_2$O$_4$/PUF) for Cd (II) adsorption was assessed by repeating 7
cycles of successive adsorption and desorption

Analysis of real samples

In order to assess the applicability of the method to real samples, with different matrices containing varying amounts of a variety of diverse ions; the method was applied to the determination of Cd (II) and Cu (II) ions from different matrices such as tap water, Qaroun lake water and Bahr Youssef water, from Fayoum Governate.

Real water analysis

100 ml of tap water sample was collected from our research laboratory in the Faculty of Science at Fayoum Governate, Qaroun lake water, underground water or Bahr Youssef water, at Fayoum City were spiked with 20µg of the standard solution of the tested metal ions, and the mixture was shaken for 1h by a mechanical shaker. The metal ions were eluted by 10 ml of 0.5 mol. L⁻¹ HCl solution. The concentration of each metal ion in the eluate was measured by the recommended method.

RESULTS AND DISCUSSION:

X-ray diffraction (XRD)

Figure (1) shows the XRD patterns of ZnFe₂O₄ nanoparticles. The main diffraction peaks appeared at 2θ = 29.919°, 35.264°, 42.844°, 53.110°, 56.629°, 62.212°, and 73.513°, which were attributed to the crystal plane of ZnFe₂O₄ structure (220), (311), (400), (422), (511), (440) and (533) planes, respectively (XRD JCPDS data file No.22-1012). The prepared ZnFe₂O₄ nanoparticles have high crystallinity and a single cubic phase with spinel structure, as shown by these XRD peaks. The average crystallite size of ZnFe₂O₄ nanoparticles is 25.6 nm.

Magnetic Properties of ZnFe₂O₄ Nanoparticles

Figure (2) shows the hysteresis loops and the magnetic parameters (saturation magnetization (Ms) and coercivity (Hc)) of the prepared ferrite nanoparticles fired at 400°C for 1h by using a vibrating samples magnetometer at room temperature. It was observed that the saturation magnetization (Ms) and remanent magnetization (Mr) of the fired sample are 4.175emu/g and 1.141emu/g. Also, ZnFe₂O₄ nanoparticles observed the ferromagnetic behavior and have 267.11G coercivity.

Transmission electron microscopy (TEM) analysis:

High-resolution transmission electron microscopy (HR-TEM) analysis was carried out to provide evidence for the morphology of the ZnFe₂O₄/PUF composite as shown in Figure (3). It was observed that the ferrite nanoparticles are scattered in the PUF and/or agglomerated together inside the PUF. This is due to the magnetic nature of the ferrite nanoparticles leading to the form of agglomerations inside the PUF. The estimated average particle sizes of the samples were found to vary between 5.37 nm and 25.45 nm for the ZnFe₂O₄ sample as shown in Figure (3).

Scanning electron microscope (SEM)

Figure (4) shows the microstructure of the prepared composite (ZnFe₂O₄/PUF). It was observed that the microstructure of the prepared composites has a spongy structure (spherical shaped) and the nanoparticles (white spots) disperse inhomogeneity inside the PUF structure. In addition, it was detected that the composite PUF/ZnFe₂O₄ containing three types of pores: coarse, medium and fine with different pore sizes 1.117mm – 655.8µm, 613.1µm – 286.2µm and 9.624 µm – 1.529 µm, respectively.
Fig. 1: XRD of the ZnFe$_2$O$_4$ nanoparticles

Fig. 2: The hysteresis loops and the magnetic parameters of the ZnFe$_2$O$_4$ nanoparticles

Fig. 3: HR-TEM of the ZnFe$_2$O$_4$/PUF composite
Batch Procedure

Effect of pH:
The pH of the aqueous solution was clearly an important parameter that controlled the uptake process. As it influences not only the metal ion speciation but also the charges on the active adsorption sites. So, the effect of solution pH on the removal of Cd (II) and Cu (II) from aqueous solution onto nano ZnFe₂O₄ and ZnFe₂O₄/PUF composite adsorbents was studied over the pH range 2-8 and the results were plotted in the Figures 5 and 6. It is clear that the uptake percentage increase with increasing in the solution pH from 2 to 4 and from 2 to 5, then it becomes steady up to pH 8, this trend was observed for Cd²⁺ and Cu²⁺ ions, respectively, Fig. 5. This could be attributed to the degree of speciation and the ionization of the adsorbate which are mainly affected by the solution pH (Bidabadi et al., 2009). The extraction of the nano sorbent for the studied analyte ions are 93 % and 95 % for Cd²⁺ and Cu²⁺ ions on ZnFe₂O₄ nano sorbent. While the maximum uptake for the composite materials is 96% and 97% onto ZnFe₂O₄/PUF at the pH 6 and pH 5 for Cd²⁺ and Cu²⁺ respectively, as shown in Fig. 6. At lower pH values, there is a decrease in the removal capacity of all sorbents due to the electrostatic repulsion of the protonated active sites on the sorbent surfaces with the positively charged metal species. The H⁺ ions concentration also plays an important role in the removal of the analyte ions by the solid phase, because H⁺ ions can undergo exchange with the surface of composite materials. The percentage of removal obtained indicated that this composite material has a greater affinity towards Cu²⁺ ions but less affinity towards Cd²⁺ ions in the range of pH 2 and 3. Adequate removal for the effective extraction of the studied metal ions has become a paramount issue. Thus, many nanomaterials
have been developed as economical; have a high surface area and good sorption capacity. ZnFe$_2$O$_4$/PUF composite materials have been investigated because the white foam is widely known to have great surface area. As was observed in Fig. (6), the removal percent increases with increasing the pH value, then it decreases at pH 7 and 8, this decrease in the uptake may be attributed to the possible precipitation of metal hydroxides. The proposed procedure recommends the extraction solution at pH 6 for Cd (II) and Cu (II) ions on ZnFe$_2$O$_4$/PUF composite materials where the removal percent was recorded at 96% and 97% for Cd (II) and Cu (II) ions respectively. While the extraction percent on ZnFe$_2$O$_4$ sorbent at pH 5 for Cd (II) and Cu (II) are 91% and 96% respectively. The pH value of the aqueous solution is an important factor for the quantitative removal of the analyte ions.

Fig. 5. The effect of pH on the removal percent of Cd$^{2+}$ and Cu$^{2+}$ ions on to ZnFe$_2$O$_4$ nano adsorbents at C_0=0.8 ppm, m/v = 0.1/25 mL and shaking time 60 minutes.

Fig. 6. Effect of pH on the removal of Cd$^{2+}$ and Cu$^{2+}$ onto ZnFe$_2$O$_4$/PUF adsorbent at C_0=0.8 ppm, m/v = 0.1gm/ 25 mL and shaking time one hour.
Effect of shaking time
The removal time is another important factor in determining the possibility of the application of the new composite for the removal of Cd (II) and Cu (II) ions. The effect of the shaking time on the uptake of the two analyte ions was studied as shown in Fig (7). The percent of the uptake of two analyte ions by the ZnFe$_2$O$_4$/PUF composite depends on the time at which equilibrium attained, which considered as the equilibrium time (Burham et al., 2009). The rate of the removal Cd (II) and Cu (II) ions was studied over a series of varying removal time from 1 to 75 minutes. It is clear that the removals percent increase with increasing the contact time and reach 94.8% and 96% for Cu (II) and Cd (II) onto ZnFe$_2$O$_4$/PUF. Also, the time required to reach maximum removal is around 60 minutes. This is considered a short period, which confirms the accessibility of the ZnFe$_2$O$_4$/PUF composite materials for the rapid removal of Cd (II) and Cu (II) ions from aqueous solution, also the binding constant between the analyte ions and the removal composite materials is possibly high. The results also indicate that, the ZnFe$_2$O$_4$/PUF composite materials are suitable for the application in flow systems which are faster removal. In addition, this composite used in the pre-concentration of trace ions after 60 minutes.

Effect of sorbent dosage:
Many researchers showed that adsorbent dosage has a significant effect on the removal of metal ions from aqueous solutions (Setshedii et al., 2013; Prasad et al., 2006). The effect of ZnFe$_2$O$_4$/PUF composite weight on the removal of Cd$^{2+}$ and Cu$^{2+}$ from aqueous solutions was tested as which 20 µg of each element were placed in 25 ml sample at the optimum pH and optimum shaken time with varying amount of the composite from 0.025 to 0.3 g /25 mL and the results were presented in Fig(8), it shows that the extraction percent of Cd (II) and Cu (II) increases with increasing of the composite weight from 0.025 to 0.2 g. The uptake efficiency enhances with the adsorbent content which reaches 95.8% at 0.2 g /25 mL for Cd (II) and 96.5% at the same dose for Cu (II) onto ZnFe$_2$O$_4$/PUF. This could be attributed to increasing adsorbent content, increasing the number of active sites available for adsorption and hence efficient removal was achieved (Burham and Sayed, 2016). When the composite dose increased more than 0.2g, there is no significant increase in the uptake percentage of the studied ions by the composite. This behavior suggests that after a certain dose of the composite, the maximum uptake is attained and hence the amount of the ions remains constant even with further increasing of extractor dose. The increase of the extractor weight prevents the analyte ions from reaching the various sites of the composite.
Effect of metal ions concentration
The relationship between the amount of a metal ion extracted at a constant temperature and its initial concentration in the equilibrium solution is called the adsorption isotherm. The capacity of the sorbent is an important factor because it determines how much solid phase is required quantitatively to remove a specific amount of the studied ions from the solution. The capacity Q (μg/g) of adsorbed ion at 25°C was calculated using equation (2). Extraction isotherm studied for individual ions by the static mode, by shaking 25 ml metal ions solution containing metal ion concentration varying from 10 to 100 μg at the optimized pH. The uptake capacity values were determined by increasing the initial metal ion concentration till the plateau values were obtained at Fig. (9), it is clear that the extraction capacity of Cd (II) and Cu (II) ions probably differ due to their ionic size, the value of their binding constant with the
composite, and the degree of hydration. The results indicate also that Cd (II) and Cu (II) ions are directly coordinated on the composite of foam phase, probably by using donor atoms, without other transfer mechanism (Prasad et al., 2006; Liu et al., 2004). The gradual increase in the metal ions extracted with increasing the sample concentration reveals the gradual saturation of the sorbent binding sites. When complete saturation of binding sites is fully occupied, no further uptake occurs.

Sorbent capacity

The total extraction capacity Q (µg/g) of the composite (ZnFe₂O₄/PUF) was determined by the recommended method. The total extraction capacity Q was calculated from equation \(Q = \left\{ (C_0 - C)xV \right\}/m \), Where \(C_0 \) and \(C \) are the concentration of the analyte ion in the initial and final solution, respectively (µg/ml), \(V \) is the sample volume of aqueous phase (ml) and \(m \) is the weight of the composite ZnFe₂O₄/PUF (grams). The total uptake capacity (Q ± SD*) of the ZnFe₂O₄/PUF composite are 251.50 ±0.33 µg/g and 381.01 ±0.20 µg/g for Cd²⁺ ion and Cu²⁺ ion, respectively.

Pre-concentration and concentration factor

In order to explore the possibility of pre-concentrate low concentration of metal ions from large sample volume, the effect of the sample volume on the recovery of Cd (II) or Cu (II) ions was investigated at Fig (10). The capability of ZnFe₂O₄/PUF composite to collect the tested metal ions quantitatively from large volumes was explored by the batch procedure. The sample pH and shaking time at the optimum values was adjusted. It was observed that the uptake percent value reaches from 95.7 to 96.5% and from 94.9 to 95.8% for Cu (II) and Cd (II) respectively up to 1000ml of sample volume and then decreased slowly. The maximum volume of the sample which reveals quantitative recovery of the element is utilized to calculate the pre-concentration factor. The pre-concentration factor is the ratio between the volume of the metal ion in the sample to its volume in the eluate. From the data obtained in Table (1), it is clear that 20 µg of each metal ion could be pre-concentrated from sample volume up to 1000ml under the optimum conditions without any loss of the analyte. The pre-concentration factor of ZnFe₂O₄/PUF in case of the largest studied sample volume (1000 ml) and eluate volume (10 ml) is calculated and was found to be 100 for the two studied metal ions. From these results, the extraction of Cd (II) and Cu (II) ions onto 0.2g of ZnFe₂O₄/PUF is not affected by the sample volume till 1000 ml.

![Fig. 9. Extraction isotherm of Cd²⁺ and Cu²⁺ by the ZnFe₂O₄/PUF composite at 25°C](image-url)
Fig. 10. Effect of sample volume on extraction of Cd$^{2+}$ and Cu$^{2+}$ using ZnFe$_2$O$_4$/PUF composite under optimum conditions.

Table 1. Pre-concentration factor (CF) of Cd$^{2+}$ and Cu$^{2+}$ ions with ZnFe$_2$O$_4$/PUF composite

<table>
<thead>
<tr>
<th>Metal Ion</th>
<th>Initial volume (ml)</th>
<th>Final Volume (ml)</th>
<th>Recovery (%)</th>
<th>CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZnFe$_2$O$_4$/PUF</td>
<td>Cd$^{2+}$</td>
<td>1000</td>
<td>10</td>
<td>94.9</td>
</tr>
<tr>
<td></td>
<td>Cu$^{2+}$</td>
<td>1000</td>
<td>10</td>
<td>95.7</td>
</tr>
</tbody>
</table>

Desorption and reusability of ZnFe$_2$O$_4$/PUF composite

It determines the feasibility of applying the adsorbent systems in large-scale operations. To assess the desorption characteristic of ZnFe$_2$O$_4$/PUF composite for Cd$^{2+}$, using 10 ml of 0.5 mol.L$^{-1}$ of HCl solution as eluting agent. To check the reusability performance of ZnFe$_2$O$_4$/PUF composite adsorbent, seven successively adsorption-desorption cycles have been conducted at the same adsorbent samples and experimental conditions and the results are presented in Fig (11). It was clear that the adsorption percent removal of ZnFe$_2$O$_4$/PUF composite materials for Cd (II) remains almost as the same even after 5 regeneration cycles. A slight decrease after the fifth cycle is observed indicating that ZnFe$_2$O$_4$/PUF composite could retains its functionality more than 5 cycles without significant loss of original adsorptive capacity. These results indicated that ZnFe$_2$O$_4$/PUF composite could be regenerated and further reutilized, which considerably supports the practical application of the prepared composite materials as adsorbent.
Analytical applications of the method to real Samples

To test the analytical applicability of the prepared ZnFe$_2$O$_4$/PUF composite for cadmium and copper ions, pre-concentration and recovery percent of three natural water samples; Qaroun lake water, tap water and Bahr Youssef water are collected from Fayoum government were measured. The three tested water samples are spiked with 20 µg of each metal ion and mixed together with ZnFe$_2$O$_4$/PUF adsorbent. Results obtained that, as shown in Table (2), recoveries (%) of the spiked ions to water samples were quantitatively removed. R (%) was calculated as follows: $R (%) = (\frac{C_{\text{found}}}{C_{\text{add}}} \times 100)$

Where C_{found} is the total value of the metal ions in the spiked sample, and C_{add} is the amount of the metal ion spiked. All the % R values are in the acceptable range. These results indicate good accuracy of the method in the precision point of view.

Table 2. The Recovery percent for spiked Qaroun Lake water samples, Tap water samples and Bahr Youssef water samples (n=3)

<table>
<thead>
<tr>
<th>Sample type</th>
<th>Sorbent</th>
<th>Metal ion</th>
<th>Added (µg/ml)</th>
<th>Found (µg/ml± SD*)</th>
<th>Recovery (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qaroun lake water</td>
<td>ZnFe$_2$O$_4$/PUF</td>
<td>Cd$^{2+}$</td>
<td>0.2</td>
<td>0.231±0.003</td>
<td>115.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cu$^{2+}$</td>
<td>0.2</td>
<td>0.235±0.004</td>
<td>117.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cu$^{2+}$</td>
<td>0.2</td>
<td>0.221±0.004</td>
<td>110.5</td>
</tr>
<tr>
<td>Tap water</td>
<td>ZnFe$_2$O$_4$/PUF</td>
<td>Cd$^{2+}$</td>
<td>0.2</td>
<td>0.219±0.003</td>
<td>109.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cu$^{2+}$</td>
<td>0.2</td>
<td>0.233±0.002</td>
<td>116.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cu$^{2+}$</td>
<td>0.2</td>
<td>0.225±0.003</td>
<td>112.5</td>
</tr>
<tr>
<td>Bahr Youssef water</td>
<td>ZnFe$_2$O$_4$/PUF</td>
<td>Cd$^{2+}$</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cu$^{2+}$</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conclusion:

- The high crystallinity and purity of the spinel phase synthesized of ZnFe$_2$O$_4$ nanoparticles were observed in the XRD data. Also, the average crystallite size of all nanoparticles in the range 16-25 nm.
VSM measurements showed that the saturation magnetization (Ms) values of ZnFe$_2$O$_4$ is 4.179 emu/g.

The HR-TEM images observed that the nanoparticles are scattered in the PUF and/or agglomerated together inside the PUF. This is due to the magnetic nature of the ferrite nanoparticles leads to form agglomerations inside the PUF. The average particle size of the prepared nanoparticles in PUF ranged from 5.3 to 25 nm.

The microstructure of the prepared composites observed the spongy structure (spherical shaped) and higher porosity of the prepared ZnFe$_2$O$_4$/PUF composite.

It clear that the optimal pH, at which the maximum percentages of removal reached, for Cd (II) and Cu (II) ions removal with the composite are 6 and 5, respectively.

The optimum shaking time required to reach maximum removal percent is ~ 60 minutes, at which equilibrium attained, which is considered a short period.

The maximum percentages of removal were obtained at a sorbent weight of 0.2 g.

The maximum percentages of Cd (II) and Cu (II) ions removal on ZnFe$_2$O$_4$/PUF composite materials are 95.8% and 96.5% at the optimal conditions.

The pre-concentration factor of ZnFe$_2$O$_4$/PUF in case of the largest studied sample volume (1000 ml) and eluate volume (10 ml) was calculated and found to be 100 for the two studied metal ions.

Desorption and reusability of ZnFe$_2$O$_4$/PUF composite shown that the percent of adsorption removal of the ZnFe$_2$O$_4$/PUF composite remains the same even after 5 regeneration cycles. A slight decrease after the fifth cycle is observed indicating that ZnFe$_2$O$_4$/PUF composite could retains its functionality more than 5 cycles without significant loss of original adsorptive capacity.

REFERENCES:

Fatma Hassan, et al.

World Health Organization, Aluminium in Drinking-Water: Background Document

FJARD VOL. 36, NO. 1. PP. 141-159 (2022)

استخدام مركب النانو زنك فرايت بولي بورثان قوم (PUF/ZnFe2O4) لازالة ايونات الكادميوم وناضح من المحتالات المائية
افطمه حسن يوسف، محمد محمد صلاح وحش، نجو برهام، سامي محمد عبد العظيم

كلية العلوم - جامعات الفيوم - قسم الكيمياء، 2 المركز القومي للبحوث الدقية - قسم السيراميك والحراريات ومادة البناة

تم تحضير المادة النانوتربية (ZnFe2O4) (Phases) بطريقة سيراميك جيل (modified citrate sol gel method) بحوزة السيراميك المダウンكوس (ZnFe2O4). وتم إضافة هذه المادة عند عملية الدرج، وتمكين وسيلة بورثان قوم بنسبة 33% مما يؤدي إلى تحضير قمر نهاية البحري بورثان قوم على استخلاص المعدن الثقيل وتهوية المياه التي بعد إزالتها عن الاستخدام المغناطيسي خارجي.

تم دراسة التطور الطوري (Phases) والخصائص المغناطيسية للمادة النانوتربية (ZnFe2O4) المصرف باستخدام كلاً من جهاز حلوة المجر (XRD) وجهاز محاكاة الحمضيات (SEM) من جهاز حياز الموجة المغناطيسية النانوتربية المضافة داخل البحري بورثان قوم وvette الموجة المغناطيسية المثقلة للمتراتكلا. باستخدام كلاً من جهاز المكروسموكوف النانوتربية (TEM) وجهاز الميكروسموكوف الماسح الإلكتروني (SFM).

ثم، دراسة كفاءة هذه المادة في استخلاص أيونات الكادميوم الثقيل والناضح الثقيل في نطاق معمل وتطبيقها على كلاً من مياه الصناعة ومياه الأطراف بالمحافظة البحري (بحر بوسف) ومياه بحيرة قارون.

وقد درست دراسة تكرار درجة الاش الهيدروجيني، ودراسة الوزن المطلق التي يحدث عند هذا الاش الهيدروجيني (ph=6) من الباليات علبة النتائج ان متوسط حجم الكريستالات (crystallite size) المتكون من 15-25 نانومتر.

تم دراسة تأثير زمن الدرج: تم دراسة تأثير زمن الدرج مختلفاً وتم التوصيل على ان عند زمن الدرج 0.25 min تؤدي إلى تكييف عملية التكامل المذابة عند الدرجة المحتلة. ونتائج الدراسة تشير إلى استخلاص المادة المادمة عند زمن 0.25 min مما يدل على قوة المادمة المهطلمة المكونه.

دراسة استخلاص المادمة المادمة: تم استخدام تكاملات مختلفة من ايونات الكادميوم والناضح وتم حساب سعه الاستخلاص.

\[Q = \frac{\left[C_{i} - C_{f}\right] \times V}{m} \]

دراسة استخلاص المادمة المادمة

تقص الدراسة تأثير زمن الدرج وعندما يتم استخدام هذه المادة لمدة مرات

درست دراسة تأثير زمن الدرج، وعندما يتم استخدام هذه المادة لمدة مرات. من خلال دراسة التأثير الزمني المحتلة، وتنبأ الدراسة عن استعمال هذه المادة المادمة عند زمن 0.25 min ويعتبر ذلك تأثير زمن الدرج المحتلة. ونتائج الدراسة تشير إلى استخلاص المادمة المادمة عند زمن 0.25 min مما يدل على قوة المادمة المهطلمة المكونة.

 gratuita من طيفية معهودة، وفضل نهر النيل بالبحري (بحر بوسف) وبحيرة قارون. وقد أظهرت النتائج أنه

يمكن استخدام (PUF/ZnFe2O4) في تكرار تقدم تلك الكريستالات السابق ودراسات البكء عالية.

الكلمات الدالة: ايونات الكادميوم، زنك فرايت، بولي بورثان قوم، الناضح الثقيل، تلوث المياه.